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and state of a live running Unity VR application.

ABSTRACT

Virtual Reality (VR) has revolutionized how we interact with digital
worlds. However, programming for VR remains a complex and chal-
lenging task, requiring specialized skills and knowledge. Powered
by large language models (LLMs), DreamCodeVR is designed to as-
sist users, irrespective of their coding skills, in crafting basic object
behavior in VR environments by translating spoken language into
code within an active application. This approach seeks to simplify
the process of defining behaviors visual changes through speech.
Our preliminary user study indicated that the system’s speech in-
terface supports elementary programming tasks, highlighting its
potential to improve accessibility for users with varying technical
skills. However, it also uncovered a wide range of challenges and
opportunities. In an extensive discussion, we detail the system’s
strengths, weaknesses, and areas for future research.

Keywords: large language model, VR, rapid prototyping, low code
programming, speech programming

Index Terms: Human-centered computing—Virtual reality Human-
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1 INTRODUCTION

The interplay between Virtual Reality (VR) and Artificial Intelli-
gence (AI) presents a unique conjuncture, providing a platform for
innovative immersive experiences [59,5,62]. AI has been seamlessly
woven into the fabric of VR applications, utilizing its generative
ability to create captivating multimedia content, such as images,
audio, text, and 3D meshes [52, 61, 4, 57]. AI has significantly
influenced VR, driving the development of visually and auditorily
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impressive environments and characters through algorithms that
manipulate static content generation [15, 28, 16, 36]. While this inte-
gration has undoubtedly increased VR’s sensory and creative appeal,
its potential remains partially untapped, particularly concerning the
possibilities of crafting behaviors and procedures that are integrated
with the virtual environment and respond to user interactions.

The increasing power of real-time systems and new data-driven
capture pipelines enable artists and designers to build increasingly
complex static content. However, they often lack the robust ca-
pabilities to intertwine these elements with responsive, dynamic
behaviors. Development of behaviors is still stuck within integrated-
development environments driven by off-line code editing or visual
programming [65, 17]. While several works have been proposed to
change behavior at runtime in VR [64, 63, 75], they tend to offer
limited functionality and applicability, such as replacing a single
object property or shape. We introduce DreamCodeVR (Figure ), a
VR system based on Unity and Ubiq [26,57] that bridges the gap be-
tween static content creation and dynamic behavior generation in VR
environments. Using LLMs [14,66], our approach leverages the gen-
eration of procedural code, aligning with the principles of low-code
programming [35]. Unlike conventional programming approaches,
low-code platforms leverage alternative methodologies—like visual
or natural language processing (NLP) techniques, enabling users to
create applications without necessitating extensive coding expertise.
Our adaptation of this methodology to VR explores a paradigm
where users, prioritizing their creative intent, can articulate desired
outcomes without delving into the intricacies of implementation or
mastering programming languages. DreamCodeVR introduces two
fundamental contributions to VR content creation. Firstly, it facili-
tates the generation of procedural code, simplifying the management
of real-time behaviors, visual attributes, and application logic. Sec-
ondly, it provides an incremental integration of this code into an
active application, allowing for in-the-loop testing and adjustment
without requiring an application restart, thus streamlining the devel-
opment process. This is enabled through its pipeline that combines
text-to-speech (TTS), code generation, and real-time compilation
and loading of executable components while the user is immersed in
the virtual environment. DreamCodeVR represents a preliminary



exploration of behavior generation within VR applications, serving
as a platform for further research and development into the goal of el-
evating each user to the status of citizen-developer [43,60], referring
to individuals who create applications without an extensive software
development background. This paper’s contributions include:

• The introduction of a VR system that enables users without
coding expertise to generate behavioral components of scene
elements, highlighting a critical advancement in user-driven
design.

• A detailed exposition of a modular and extensible system de-
sign, proficient in real-time injection of AI-generated code via
speech within a running Unity VR application.

• The presentation of results derived from a preliminary user
study, investigating the impact of AI-generated procedures on
user experience and engagement.

• A discussion on potential issues, limitations, and recommenda-
tions for future work.

2 RELATED WORK

2.1 VR Programming Systems

Programming systems for VR applications must address a very
wide variety of features, interfaces, and requirements [20]. Such
systems should produce applications capable of generating high-
fidelity output across multiple modalities while adhering to robust
end-to-end timing guarantees to ensure a smooth and consistent
user experience. Additionally, they must interface with various
physical devices, potentially involving multi-process or distributed
programming scenarios.

Although different pieces of equipment might have their own
application programming interfaces (APIs) or server software, there
have been substantial efforts aimed at providing standardized inter-
faces to devices. The enduring Virtual Reality Peripheral Network
(VRPN) continues to be used for certain hardware [72]. Special-
purpose commercial software has served this market for multiple
decades [78], though concurrent open-source efforts are no longer
as widely used (e.g. Diverse [42] and VRJuggler [11]). Additionally,
efforts have been undertaken to establish content standards such as
X3D [39], seeking to extend these to platforms that support diverse
requirements [8]. More generalized support in web browsers is
provided by the WebXR API [77].

Despite the various open initiatives, the majority of VR appli-
cation development takes place within commercial game engine
tools such as Unity or Unreal. Rather than a mere set of abstraction
APIs, these tools provide visual editors that enable the assembly of
assets, management of scenes, and structuring code within a visual
editor. The resulting assets and code are built into a runtime engine
and asset set that forms a packaged application. The prevailing
model of distribution of VR applications entails downloading and
installing these packages. Furthermore, updates of the runtime code
are typically conducted through patching or updating.

2.2 Dynamic Code

In applications designed to cultivate creativity and those incorpo-
rating diverse sub-worlds, such as social platforms, the capacity to
update code during runtime dynamically is beneficial for facilitating
real-time user interaction, continuous content creation, and seamless
implementation of system updates or modifications. Historically,
numerous games incorporated their own scripting languages or en-
vironments. Early multi-user dungeon (MUD) systems provided
players with the capabilities to edit and extend the system [7]. Fur-
thermore, various early game engines included a scripting engine,
facilitating designers to program in a language-oriented towards
game content, as opposed to utilizing low-level abstractions, with

the ability to interpret the language at runtime. Notable examples
include SCUMM from LucasFilm/LucasArts [9] and QuakeC from
iD Software [2]. This pattern was embraced by early VR systems
(e.g., DIVE, which used the Tcl language [27]) and augmented re-
ality (AR) systems (e.g., Dart AR [50]). In the context of social
platforms, a seminal example is the Linden Scripting Language for
Second Life (e.g., see critique [19]).

As VR platforms evolve and the interest in content creation in-
creases, a relevant question arises concerning the immersed user’s
capability to alter and extend application code. Unity demonstrated
extensive editing capabilities with their EditorVR framework [24] to
allow users to create content directly in VR. Rec Room incorporated
a built-in visual scripting language, Circuits, enabling constrained
editing of object behavior [13], while VRChat employed a similar
system called Udon [76]. Moreover, RealityFlow is an open-source
implementation of an immersive collaborative visual programming
environment [55]. To safeguard system integrity and user experi-
ence, such languages and frameworks are somewhat restricted in
their domains and capabilities, typically only enabling asset creation,
modification, and deletion.

Modern runtimes afford the capability to compile and execute
code dynamically, enhancing the flexibility and interactive nature
of VR environments. DreamCodeVR leverages the Roslyn com-
piler [23] for dynamic C# code compilation within Unity, enabling
the integration of user-driven, real-time modifications into virtual en-
vironments. A comprehensive description of the utilized mechanism
is provided in Section 3.3.

2.3 LLM for Code Generation

LLMs have recently emerged as a powerful tool for code generation,
having been trained on extensively large datasets containing code in
various programming languages [66,47]. However, LLMs can some-
times generate code that is neither idiomatic nor efficient, leading to
potential difficulties in readability, maintainability, and performance
when compared to human-written code [40].

Despite these challenges, LLMs can be a valuable tool for soft-
ware developers and have sparked the development of various ap-
proaches to optimize their utility. Consequently, numerous com-
mercial and open-source LLM-based code generation tools are now
available [25, 32]. A notably prominent tool is GitHub Copilot,
which integrates with Visual Studio Code and other popular code
editors to suggest code completions, generate new code, and facil-
itate code translation between programming languages. It is built
on the OpenAI Codex model, an LLM fine-tuned on a large code
dataset. Another widely-recognized LLM-based tool is Tabnine,
which provides code completions, refactoring suggestions, and code
generation capabilities, along with features that allow training on
personal code corpora. Other available LLM-based code generation
tools include Amazon CodeWhisperer, CodeT5/T5+, and PolyCoder.
However, despite the advancements of LLMs, they occasionally
generate code that is incorrect, inefficient, or unexecutable. Further-
more, another challenge that arises from utilizing LLMs for code
generation is the inherited bias from their training datasets, which
reflect the biases of their creators [18].

Nonetheless, LLMs possess the potential to substantially enhance
the productivity of software developers by automating various cod-
ing tasks. These tasks include generating boilerplate code, refactor-
ing existing code, and translating natural language descriptions into
new code functionalities [48]. Moreover, LLMs can adeptly create
code for the implementation of new features, the correction of bugs,
and the execution of other labor-intensive tasks that are commonly
considered time-consuming. In our work, we utilize LLMs to derive
code from natural language descriptions of compact functionali-
ties, thereby facilitating code generation for users unfamiliar with
programming or seeking to expedite their work.



2.4 LLMs in VR

LLMs have the potential to transform interactions within virtual
worlds, establishing avenues for more immersive and interactive ex-
periences, and fostering the development of innovative applications
in VR [57]. For instance, the system Ubiq-Genie underscores the
utility of employing an LLM in the backend of VR applications, by
driving a virtual agent that orchestrates a quiz game among multiple
users within a social VR application. LLMs in VR mainly demon-
strate their utility to users in two distinct phases: the development
phase and the execution phase, each presenting unique attributes
and challenges. In the development phase, users interact with LLMs
through an interface, utilizing its output in code or other textual
forms for diverse development processes, including integrating the
generated code into their programming environment.

For this purpose, several LLM-based tools were developed to
streamline such tasks [37, 49]. Conversely, during the execution
phase, LLMs are directly integrated into running applications, reliev-
ing users from additional integration or interpretation steps. Despite
inherent challenges, this introduces the potential to facilitate the co-
herent creation and orchestration of program logic while immersed in
a running VR application. Roberts et al. [63] utilized LLMs as a con-
text engine for object-to-object interaction to facilitate prompt-based
creation of VR content, using the example of "Codex VR Pong".
This game showcased non-deterministic game mechanics, where
generative processes create both static content and non-trivial inter-
actions between 3D objects. In very recent parallel work, researchers
introduced LLMR [21], a framework that integrates advanced scene
understanding and task planning within Unity in MR supported
by an LLM and runtime compilation, showing its effectiveness in
modifying diverse virtual elements. One particularly promising
application of LLMs in VR lies in games, where LLMs can be used
to control game logic dynamically, generate realistic dialogue and
behaviors for characters, and provide players with contextually rel-
evant information and assistance, enhancing both the interactivity
and immersive experience of games. For example, Van Stegeren et
al. fine-tuned an LLM to generate dialogues of non-player charac-
ters (NPCs) that assign users tasks (i.e., "quests") in a role-playing
game [74]. Similarly, Volum et al. employed LLMs to author scripts
that drive interactive NPCs capable of assisting Minecraft players by
answering questions, performing actions (e.g., crafting an item), and
engaging in multi-turn conversations with the user [75]. When two
objects (e.g., fire and ice) interact in their system, an LLM is used
to infer the interaction outcome. Based on the inferred result, a 3D
mesh model is retrieved from an existing database and introduced
into the environment.

Applications utilizing LLMs, including the aforementioned exam-
ples and DreamCodeVR, which require real-time interaction, need
LLMs to generate high-quality code with minimal latency to assure
a seamless user experience. Specifically, in the context of Dream-
CodeVR, code generation and compilation can be identified as two
primary tasks that can potentially impede user experience if not con-
ducted promptly. While open-source LLMs offer the flexibility to
operate on local or low-end hardware, server-based or cloud-based
LLMs are often preferable for ensuring optimal quality and mini-
mized latency, particularly in resource-intensive VR applications.
The substantial computational power provided by server-based and
cloud-based LLMs ensures fast and reliable processing, essential for
sustaining immersive and interactive VR experiences. Consequently,
DreamCodeVR adopts a server-based application architecture to
facilitate the utilization of any LLM that can be run on local server
hardware. Notably, we deploy a cloud-based LLM in our user study,
prioritizing high-quality and low-latency model responses.

2.5 Speech Interaction in VR

Speech interfaces offer significant utility in scenarios where key-
board support is unavailable or unreliable, particularly when inte-

grated with embodied VR to enable body-centric commands [79,
41, 46]. Speech input can offer notable advantages over traditional
keyboard or gesture inputs [69], particularly since the latter often
requires extensive practice. However, speech-based interaction en-
compasses multiple challenges, including speech recognition, phrase
interpretation, and user interaction dynamics [6, 70]. The implemen-
tation of speech interaction varies significantly across different stud-
ies, with user engagement closely linked to the specific task at hand
and the capabilities of the system components [31, 30]. The inter-
section of speech interaction and VR dates back several decades, as
evidenced by pioneering works [53, 54] leading to the development
of multi-modal systems with two distinct approaches: fully interac-
tive speech or command-and-control. The fully interactive approach
was commonly speaker-dependent in early work, necessitating a
training phase known as enrollment due to the vast array of words
and sentences involved [56]. Before the recent advancements in NLP,
researchers often relied on the ’Wizard of Oz’ methodology [44, 29]
to circumvent the technical constraints of speech interfaces in the
recognition and processing of phrases. In contrast, command-and-
control systems were designed to function effectively with a limited
set of predefined commands. This approach sacrificed conversa-
tional flexibility for reliability and ease of use, as it more often did
not necessitate user-specific training.

Leveraging its benefits, speech interaction has been explored in
various fields such as medicine for treating social phobia [73], col-
laborative data analysis [12], and managing digital twins of complex
machinery [68]. With the rise of advanced deep learning NLP mod-
els, speaker-dependent systems have become less relevant. Present-
day services like Google Speech-to-Text, IBM Watson, Amazon
Transcribe, and Microsoft Cognitive Services can receive and pro-
cess audio streams, providing real-time transcription. Our system
harnesses these capabilities to generate input to an LLM tasked with
generating functional code in C#.

3 SYSTEM DESIGN AND IMPLEMENTATION

We adopted the Unity framework and utilized the open-source social
VR platform, Ubiq [26], which provides functionalities dedicated
to the rapid development of networked VR applications. Ubiq has
demonstrated efficacy in seamlessly integrating third-party services
into VR solutions [57], rendering it a logical choice for harnessing
external AI resources.

Ubiq-Genie comprises three primary entities: "Unity Scene,"
"Application," and "Services." While the Application and Services
operate on a backend server, the Unity Scene contains the 3D en-
vironment with which the user interacts. Each Application is con-
nected to its unique scene in this configuration, thereby serving as
an orchestrator of backend services. Services are defined as Node.js
components (e.g., text-to-speech service, LLM service) and act as
modular entities capable of invoking processes written in other lan-
guages (e.g., Python). Consequently, each Application establishes a
connection with a server-side pipeline, facilitating interaction with
various services and enabling data exchange among them.

DreamCodeVR defines a two-service pipeline: the first service
transcribes the audio speech via Azure speech-to-text, and the resul-
tant string is supplemented with a predetermined prompt to guide
the subsequent text generation process. The second service manages
calls to an LLM API or model, passing the input string received
from the speech-to-text service and responding with an answer that
comprises both an explanation and code. In our configuration, we
primarily utilize the cloud-based API of GPT-4 (see Section 3.2);
however, this service provides flexibility in utilizing any LLM that
can be run through any programming language capable of commu-
nicating over the I/O stream (e.g., Java, Python, C++). We process
the output of the LLM by extracting the code. Subsequently, the
code, in the form of a string, is sent back to the user’s device, where
it is compiled and executed with the Roslyn C# compiler Unity



Figure 2: Pipeline architecture that shows the following sequence of steps. After the user describes the behavior or the procedure he wants
to attach to the scene, we convert the audio into text by Azure speech transcription service and enrich the input text via prompt engineering.
LLM uses such text and produces an answer comprising explanations and code. After extracting the code, we pass the string back to the
VR application that includes a C# compiler that generates the bytecode in memory and provides our controller with a way to attach it as a
component to the selected object. The selected object will promptly be provided with such additional behavior.

asset [38], distributed as a dynamic library in the VR App. The
assembly now present in memory is then attached by an orchestrator
class to a scene’s object, manually chosen by the user beforehand,
or to a default controller. The functionality is then immediately
available as following the Unity script lifecycle flowchart [22]. The
entire pipeline is depicted in Figure 2.

Two distinct scenes were designed for the usage of Dream-
CodeVR: the first, equipped with rudimentary objects to facilitate
behavioral testing, and the second, an empty canvas for creating
objects along with their corresponding behaviors.

3.1 Prompt Engineering

Utilizing LLMs to generate code is not a straightforward task. The
output from an LLM can significantly vary depending on the formu-
lation of the prompt. To minimize output fluctuations and ensure
alignment of the generated code with the desired task and requisite
framework, meticulous engineering of the prompt is essential. One
approach to prompt engineering, particularly for code generation,
involves utilising a system prompt template. This system prompt
should outline the desired code structure, style, and additional rules
to constrain the output to a specific language or framework.

We refined our prompt through several iterations to address var-
ious issues: absence of code in the answer, improper separation
of code from the answer, code that failed to compile, code that
compiled but was not adequately tailored for the Unity framework,
and code that did not function correctly even when active in the
scene. We incorporated additional visual representation, positioning,
and shape crafting rules. Therefore, we constructed our prompt by
considering the following criteria:

• C# language

• Code always present

• Avoid Unicode characters that can tamper the building process

• Be compliant with the Unity framework

• The behavior will be embedded as a single and unique Compo-
nent (inheriting from the MonoBehaviour class)

• Avoid conflicts such as name clashing for the components

• Potential new object needs to be visible with a MeshRenderer

• Spatial relationships are allowed for the selected object or, if
no object is selected to the Controller Object

• Shapes have to be simplified to primitive Geometries present
in Unity

• A common tag for created objects needs to be present (to
ensure selection)

• Avoid classic input mechanisms such as a keyboard or mouse.

We achieved the best results with the following prompt:
Write a script in C# for Unity, so a class that

inherits from MonoBehaviour. In your answer always
write code between tag “csharp and tag“<USER_INPUT>. Use
a Component name that does not conflict with previous
used or default Component names from Unity. Always set
the tag to game. Do not use interaction from devices
such as keyboard or mouse. Use ASCII code and no Unicode
in the answer. Create only one MonoBehaviour. If ’this’
or ’that’ is used, assume the object is still present and
do not create other instances. If a new instance of an
object is created it should have parent ’transform’, and
infer the shape to primitive geometries present in Unity.
Attach a MeshCollider.

This prompt has been tailored for the basic 3D scenario in Dream-
CodeVR, signifying that additional development is necessary for
handling more complex contexts or tasks. In future work, a dynami-
cally adaptive prompt could be developed, incorporating information
from the scene (e.g., the Unity scene graph, component lists, scene
constraints) that can change during the user experience.

3.2 Code Generation Comparison

To determine which available LLM is most suitable for application
within DreamCodeVR, we qualitatively compared five LLM models:
a local LLM implementation based on the GPT4All [3] Python pack-
age, with two models running on a CPU with high performances [1]
(Falcon with 7B parameters and Nous-Hermes2 with 13B parame-
ters); a local GPU version of CodeLlama (CodeLlama-7b-Instruct-hf
with 7B parameters); GPT-3.5-turbo cloud-based API; and the GPT-
4 cloud-based API. The local models were deployed on a PC with
an RTX 4060 GPU, an Intel i9 processor, and 64 GB of RAM.



Table 1: Comparison of five different models related to accuracy and
time to answer. (l) denotes local LLM, (r) is a remote-serviced LLM

Model Accuracy (%) Time to answer (sec)

Falcon (l) 20% 143.0
Nous-Hermes 2 (l) 20% 89.7

CodeLLama (l) 40% 453.8
GPT 3.5 API (r) 70% 15.1
GPT 4 API (r) 90% 29.5

For each model, we constrained the maximum number of to-
kens to 1000 and set the temperature to 0.7. Notably, the token
limit for CodeLlama was reduced to 500 due to significant latency
experienced with 1000 characters (exceeding 1400 seconds). We
executed ten predefined descriptions of object behaviors involv-
ing alterations in visual appearance, object creation (singular and
multiple), dynamic changes, inter-object relationships, destruction,
temporal requirements, and task combinations. The generated code
was evaluated for each description, considering a task "passed" if
all prompt requirements and conditions were achieved with correct
functionality in the resultant code. This evaluation encompassed
visual inspection of the code and examination of the prompt genera-
tion rules and the ensuing behavior in the Unity scene. The average
accuracy per model and the average time (in seconds) needed to
generate the script are reported in Table 1.

In VR applications, latency is often a pivotal factor as users
can perceive minor delays in feedback. The cloud-based APIs of
GPT-3.5 and GPT-4 showed fast response times and accuracy, posi-
tioning them as viable options for VR applications. Considering the
paramount importance of precise behavior, the DreamCodeVR im-
plementation uses the GPT-4 API model, demonstrating the highest
precision and the second-lowest response time. Conversely, CodeL-
lama had the poorest response time and showed inadequate accuracy
in generating valid code for the Unity environment.

3.3 Real-Time Code Building on Untethered Devices

The .NET Compile Platform SDK allows a runtime to include func-
tionality to analyze and compile C# and Visual Basic code. This
allows for creating an assembly, crucial for tasks such as code gener-
ation from templates, transpiling code from one language to another,
refactoring, and performing code analysis. On the other hand, the
compiler pipeline consists of four phases:

1. Parsing: The code is tokenized and parsed into syntax that
conforms to the language’s grammar.

2. Declaration: The code and imported information are parsed
to generate named symbols.

3. Binding: In the code, identifiers are mapped to symbols.

4. Emit: An assembly with all the information the compiler
generates is emitted.

Each phase of the SDK exposes a specific object model, offering
various access levels. For instance, the parsing phase reveals a syntax
tree, the declaration phase unveils a hierarchical symbol table, the
binding phase presents the compiler’s semantic analysis results, and
the emit phase provides an API that yields Intermediate Language
(IL) byte codes. To facilitate code compilation at runtime, we employ
the compiler API to instantiate a compiler object, which is then used
to compile the code. We directly access the in-memory generated
assembly, ensuring it exposes an interface compatible with the Unity
environment. Notably, the latency incurred during code building and
loading within our environment is marginal compared to the time
required for our employed LLM to generate a result.

Figure 3: VR Scenario presented to the users. After a training
session selected from the main menu (on the left), the user can
provide behaviors on a cube to reach the target (without color or
with color) as displayed in the pictures in the middle; on the right,
the third session, where the user has to create a small solar system
with a planet orbiting around the star.

By using the compiler pipeline, we can construct a component’s
functionality in memory, which can be attached to a scene-defined
object within the Unity environment. We perform the code compila-
tion and assembly loading stages directly on the untethered client
device, tasking the server solely with the LLM-driven code genera-
tion. Utilizing the compiler API, we generate a C# class representing
the component functionality by inheriting from the MonoBehaviour
class (the base class for all Unity components), which is then added
to the Unity scene by attaching it to an object. This automated
method replicates results akin to a developer manually adding a
Component script in the Unity Editor, connected to an object via
menu or through drag-and-drop in the Inspection panel. Once a
component is attached to an object, its execution adheres to the
same policies as a newly added scene component. If code is defined
inside the Awake or Start function, it executes once; if embedded
in the Update function provided by the MonoBehaviour interface,
it executes each frame. Our method uniquely enables runtime incor-
poration and direct formulation within a standalone client device,
distinct from traditional manual script addition during development.
Moving forward, the compiler pipeline offers a pathway to enhance
component functionalities and create a robust environment adept
at managing error handling, object communications, functionality
sequences, complex interactions, and intricate object generation.

3.4 User-System Interaction

The quality of user interaction with DreamCodeVR is highly de-
pendent on its feedback mechanisms for communicating errors and
incorrect behaviors to the user. Leveraging its pipeline, Dream-
CodeVR transforms user inputs into executable scripts with a la-
tency tolerable for real-time interaction (Section 3.2). However, the
system is not immune to errors in behavior execution, as classified
in Section 6.1. Error handling in DreamCodeVR occurs across mul-
tiple layers of the system. Server response errors or compiler errors
immediately prompt a halt in the pipeline process, preventing further
complications. As a result, users will not observe any unintended
effects within the VR environment related to dysfunctional scripts
or assemblies, thus maintaining the scene’s integrity and readiness
for subsequent requests. Furthermore, DreamCodeVR incorporates
an interactive debug display, currently utilized by experimenters
to monitor and troubleshoot the creation process as driven by user
input. This feature systematically captures and displays exceptions,
particularly those arising from assembly building and loading op-
erations. Recognizing the necessity for a more transparent system,
future work should investigate strategies to tailor debug output to
be intuitive for users without programming expertise and to provide
varying levels of detail according to user skill. Moreover, the system
necessitates an undo operation to remove unwanted behaviors that
have passed the code generation, building, and loading stages.



4 PRELIMINARY USER STUDY

We conducted a user study with seven participants (four male, three
female, mean age 32.6 years), adhering to recommendations for "de-
bugging" tests outlined by Bevan et al. [10]. All users had previous
experience with VR consumer gaming but no experience with pro-
gramming. This specific profile of users was selected as it best repre-
sented the type of users we intend to target with our exploration: VR
enthusiasts who do not possess the specialized knowledge needed to
create VR environments through programming. The primary objec-
tive of the study was not to validate every facet of the system fully.
The study focused on assessing our specific approach to immersive
speech programming, exploring its potential and limitations, espe-
cially for novice users unfamiliar with VR software development.
The insights gathered are intended to inform further iterations of our
application and provide valuable insights for researchers aiming to
build upon this work.

During the study, participants were instructed to sit comfortably
on a chair and wear a Meta Quest 2 HMD. Upon doing so, they
entered a virtual environment that simulated an outdoor setting,
which included green grass, a tree, and a wooden log on the ground.
A menu was displayed in front of the participants, allowing them to
access a familiarization session and one of the three experimental
sessions outlined below (see Figure 3).

1. Cube movement: Maneuver a gray cube into a specified distant
target area.

2. Cube colorization and movement: Alter a cube’s color before
relocating it to the target area.

3. Simple solar system: Generate a stationary object (symbolizing
the sun) and a moving object (symbolizing a planet), adhering
to specific color instructions.

At the start of the study, participants were provided with a concise
system overview. This was followed by a 5-minute familiarization
session, allowing them to experience the system’s accuracy and re-
sponsiveness. Subsequently, participants were requested to complete
each experimental session in the provided order, involving various
tasks related to object manipulation and creation within the virtual
environment. We evaluated our system through a combination of
methods:

• Preliminary usability assessment: We relied on the task
completion time (TCT) and error rate to obtain a preliminary
estimate of the usability of the system. While our sample size
was too small to evaluate DreamCodeVR’s usability fully, the
results of these metrics could still be valuable in providing
an initial indication of the weaknesses and strengths of the
system.

• Perceived workload: We used the NASA-TLX [34] question-
naire to measure the participants’ perceived workload during
each session.

• Structured interview: We investigated the experience of users
using immersive programming with a structured interview. The
interview was carried out at the end of all three sessions. In
the interview, we asked the participants to complete a ques-
tionnaire while reasoning aloud, motivating their answers. We
collected their comments and reported their ratings for com-
pleteness (as the sample size was too small for these ratings to
be statistically relevant) as shown in Figure 4. The structure
and phrasing of the questionnaire items were based on existing
surveys [67, 45], where a positive statement about the system
is endorsed or refuted by users on a 7-point Likert scale, from
1 (strongly disagree) to 7 (strongly agree). The questionnaire
included the following statements:

(Q1) I liked the possibilities given by the system.
(Q2) I felt immersed in the environment.
(Q3) It was simple attaching a behavior to an object.
(Q4) It was simple to create a system composed of multiple

objects.
(Q5) Visual appearance properties are simpler to add than

changing the kinematics of the object.
(Q6) The behaviors I added agreed with my description.
(Q7) The system was responsive, and the behavior was added

in an acceptable time.
(Q8) I liked the overall experience.

5 RESULTS AND ANALYSIS

In this section, we present a comprehensive analysis of the results
obtained from the preliminary user study to evaluate the usability,
perceived workload, and qualitative user experience assessment of
DreamCodeVR.

5.1 Usability and Error Classification

TCT spanned between 70 and 499 seconds across all participants
and tasks. Error occurrences varied from 0 to 6 across all contexts.
Tasks 1 and 3 proved the most challenging, evidenced by the highest
completion times and error rates. Intriguingly, despite Task 2 adding
a color complexity layer to Task 1, it consistently resulted in lower
TCTs and error rates for all participants. We classified observed
errors into three categories:

Instruction Errors In this case, the instructions provided by
the user were not accurate or correct for the program to accomplish
the task, leading to either "no behavior" (6/37 of the generated in-
struction errors) or "wrong behavior" (7/37 the generated instruction
errors), see Figure 5. Some examples of wrong behavior included
the creation of an object in the wrong location and the movement of
an object in an undesired pattern.

Non-Instruction Errors These errors (16/37) originated when
users spoke while the system was waiting for instructions but with-
out delivering instructions to the system (i.e., delivering a "non-
instruction"). Non-instructions mostly included comments on the
outcome of a previous interaction. For example, a user could com-
ment "wow, it really became red" on changing the color of a sphere,
while still pointing towards the object. This prompted the system to
record the user’s utterance and try to execute it. These errors gave
origin to "no behavior". However, the occurrence of these errors was
usually followed by increased frustration from the users. In fact, in
these instances, users tended to deliver their next instruction while
the system was still trying to compile the "non-instruction", giving
the impression that the system was unresponsive.

System Errors Systems errors occurred when the system be-
havior did not reflect what was asked by the user. System errors
accounted for 8 out of 37 errors. This includes three instances
where the connection between the server and the services dropped.
The number of system errors also includes five instances where
the speech-to-text service could not correctly transcribe the users’
instructions, likely due to some of the users’ accents.

Item Task 1 Task 2 Task 3
Completion time (s) 167.7±78.1 79.5±7.5 271.4±134.5
Number of errors 2.1±1.3 0.3±0.4 2.9±1.6

Table 2: Average TCT and Error number for all 3 tasks



5.2 Perceived Workload

Perceived workload ratings were generally low for the first two tasks
and became higher for the third task. Specifically, in the third task,
while the mental and physical load remained constant, the temporal
demand, effort, performance, and frustration increased in value,
although they remained of relatively low value (5.2).

Item Task 1 Task 2 Task 3
Mental demand 13.4±3.2 10.3±2.0 15±4.2
Physical demand 3.0±1.2 2.3±2.3 2.2±3.1
Temporal demand 10.8±4.3 7.5±3.7 15±4.4
Performance 11.2±3.2 2.1±5.0 14.4±6.3
Effort 10.8±4.5 3.1±2.4 13.0±4.6
Frustration 13.3±4.0 6.5±2.0 17.3±5.2

Table 3: NASA-TLX results for all three tasks

Figure 4: Average responses for the eight questions to drive the
qualitative study. Although not statistically relevant due to the
reduced sample size, these data provide an interesting summary of
our users’ impressions of the system.

5.3 Structured Interview Responses

We collected 216 comments across seven users and eight interview
questions. Because of the structured nature of our interview, the
focus of these comments was consistent across users. We catego-
rized them into four categories: usability, potential use, immersion,
and overall experience. Users commented positively about being
immersed in the virtual environment and their overall experience
(95% of comments on immersion and 83% on overall experience
were positive). Most user comments referred to the system’s poten-
tial use (20% of the overall comments) and usability (70% of the
overall comments). Users largely expressed enthusiasm regarding
the system’s capabilities. One user commented "This is fantastic. It
would be amazing to create a game where you can conjure object
[to be used in the game] by simply describing them.". Another
user pointed out how, despite its current limitation, the system had
the potential to be used as a design tool: "I feel like creating while
in VR lets me estimate better what would be the experience of the
users interacting with my design. I wonder whether there could be
a hybrid solution where I can use common design tools as well as
voice description to create the objects I want". Critiques primarily
focused on interaction quality and the challenges faced in obtaining
desired system outputs (mentioned by 7/7 users). For Q6, most users
(6/7) concurred that DreamCodeVR outperformed their expectations,
with one user noting that it gets easier the more you use it. All users

found modifying existing objects (e.g., changing an object’s color)
easier than attaching behaviors (especially movement) or creating
new objects. The complexity perceived by users amplified as more
objects populated the scene, with 6/7 referring to the third task as
the "hardest one." 5/7 expressed a desire for the system to generate
more intricate objects. One user suggested, "It would be cool to be
able to create complex objects just with a sentence. Like: make a
cow, and [the system] takes care of it for you".

Regarding interaction, primary criticisms pertained to the sys-
tem’s object generation/modification latency. Beyond an evident
desire for immediate request fulfilment (highlighted by 7/7 users), a
common complaint was the disconnect between system operations
and VR display: "I wish I knew that my command has been recorded
and that [the system] is working on it". One user also highlighted
interaction deficits related to system trust, seeking a feedback mech-
anism to confirm object properties: See, when I created a sphere, for
example, I had no way to check whether it really had the radius of
the length I asked for.

6 DISCUSSION

Our preliminary user study evaluated the potential of our system in
an immersive scenario. Although the insights were derived from a
small number of users, they provided notable preliminary insights on
system learnability, user preferences, and the relationship between
task complexity and user strategies. An intriguing observation arose
from the transition from Task 1 (cube movement) to Task 2 (cube
color change and movement). Despite Task 2’s apparent complexity,
participants exhibited lower error rates and shorter TCT than Task
1. This unexpected outcome suggests that users who mastered cube
manipulation in Task 1 effortlessly applied this knowledge to Task
2. Additionally, modifying an object’s appearance (color) did not
introduce errors, implying that certain aspects of VR interaction,
like altering visual properties, might be more intuitive than orches-
trating object movement (Q5). This underscores the importance of
foundational training before introducing complexity.

User performance across tasks revealed a direct link between task
complexity, interaction strategies, and error occurrence. For instance,
when creating a miniature solar system, users employed various tech-
niques. Task complexity affected interaction depth and increased
the likelihood of system errors, potentially leading to frustrating "no
behavior" and "non-instruction" errors. This impacted Q6 and Q7,
where longer prompts elevated the risk of misunderstandings by the
system, resulting in higher error rates and delays due to the necessity
to resubmit queries. These findings emphasize the importance of
meticulously crafting interactions and prompts for specific tasks, en-
suring a balance between the accuracy of the output and the system’s
response time. Participants’ experiences underscored the need for
refined instructions to minimize errors while maintaining efficiency.
Combining multiple instructions into a single prompt elevated sen-
tence complexity and error risk but reduced TCT when executed
correctly. Addressing "non-instruction" errors might be achieved by
implementing a controller trigger or similar mechanisms to filter out
unintended speech interactions while awaiting instructions.

Users emphasized the need for enhanced interaction feedback
as the display panel was only used for debugging purposes. They
expressed a desire for notifications indicating when the system was
generating a response and the ability to inspect objects in the VR
environment, visualizing their attributes and relationships. These
suggestions align with established principles of effective human-
computer interaction, emphasizing the importance of clear feedback
about system actions and status. Incorporating a user-facing display
panel with comprehensive debugging feedback could significantly
enhance user satisfaction, reduce frustration, and improve the trans-
parency of AI-driven code generation, potentially increasing user
confidence. Participants displayed genuine enthusiasm for Dream-
CodeVR’s potential despite system limitations and user suggestions,



Figure 5: Diagram showing the possible outcomes of the different stages of a compiler in Unity environment. Red-filled boxes represent
non-functional behaviors, green-filled boxes represent correct behaviors, and yellow-filled boxes represent correct behaviors with possible
irrelevant or not perceived behaviors.

as suggested by the results of Q1 and Q8. They envisioned two
primary use cases: (1) a design and creation tool and (2) an inte-
grated game mechanism. Users valued the opportunity for VR-based
content creation, facilitating more precise user experience estima-
tions. However, they also highlighted the need for a hybrid approach
that combines traditional design tools with voice-based object cre-
ation. It is crucial to recognize that while receiving encouraging
feedback, the study mainly focused on identifying user interaction
challenges and insights for future solution development and research
directions. The potential for novelty effects to inflate usability per-
ceptions among inexperienced users warrants caution in interpreting
the results. Hence, although participants showed enthusiasm for
DreamCodeVR, further investigation is necessary to fully under-
stand its strengths and potential. Future research should engage a
more extensive participant pool to increase the reliability of results.

6.1 System Outputs Classification

Driven by the user study analysis, this section discusses Dream-
CodeVR’s systemic errors and deviations from expected outcomes
in human-machine interaction. These errors are mostly brought
on by two distinct systemic sources, which we explore extensively.
The accuracy and consistency of the speech-to-text service play a
vital role in the initial errors that arise from incorrect transcriptions.
Such inaccuracies directly affect the accuracy of the LLM output.
Specifically, if the transcription does not accurately reflect the user’s
spoken input, the resulting answer may be flawed. These flaws range
from the total absence of code —mitigated by prompt-engineering
techniques— to sound architecturally but functionally flawed code.
System-based error effects are portrayed in Figure 5. We categorize
the diverse behaviors exhibited by the system, contingent upon the
output generated by the compiler. We list the following effects:

• Absence of code: Though our prompt engineering efforts
have substantially minimized this error, it can manifest in
component absence and provide a log detailing the encountered
error when it does occur.

• Code present but unable to compile: An exceedingly infre-
quent error, resulting in the non-creation of a component and
providing a pertinent log message.

• Code compiled but with an assembly loading error: Arising
possibly from component name conflicts, our prompt engineer-
ing strategies typically preclude such issues. When they do
occur, they are addressed through meticulous management.

Upon successful assembly loading, one of three scenarios may occur:

• Incorrect function: This scenario involves the system gener-
ating a flawed function, yielding results that can be impercep-
tible, irrelevant, or, in extreme cases, detrimental to the user.

Imperceptible effects might encompass components creating
non-visible logs or exhibiting no behavior. Irrelevant effects
might involve minor alterations, like subtle color changes or
minimal displacements of background objects. Detrimental
effects have the potential to severely compromise user experi-
ence, spanning from object destruction to application crashes.

• Correct function not used adequately: Proper component
attachment is vital. Even when the system generates the correct
function, improper attachment can yield outcomes similar to
those witnessed in the "Incorrect function" scenario.

• Correct function with incorrect code sections: The pres-
ence of the correct function with erroneous code sections can
introduce irrelevant or hidden effects.

• Correct function: This scenario involves the correct function
generation and usage, displaying the intended behavior.

This classification underscores the intricate and often convoluted
path toward achieving accurate behavior in human-machine inter-
action. Nonetheless, these challenges are navigable, as the Unity
Error Handling System dampens the impact of incorrect behavior,
safeguarding both system stability and user experience. Moreover,
comprehending and optimizing the LLMs’ code performance repre-
sents an unresolved issue [51]. The efficacy of the generated code,
especially concerning its memory and time complexity during exe-
cution, is subject to critical examination. Furthermore, it is worth
noting that the efficiency of the LLM code can experience substantial
variation, influenced by the LLM’s stochasticity and the granularity
of detail contained in the user’s prompt.

6.2 Generalizability and Scalability

The system’s architecture is modular, a design choice that facili-
tates the integration of future models and frameworks and enables
straightforward customization for various contexts. The current
design and functionality of the system are focused on the require-
ments for rapid development of basic object behavior in the context
of game development, where the ability to attach dynamic objects
or interactions is important. Expanding upon the current system’s
capabilities, particularly for the points mentioned in Section 7, this
approach may eventually enable 3D artists to create dynamic en-
vironments without relying on developers or possessing extensive
programming skills. While the system’s primary use case and ex-
ploratory nature and the user study did not necessitate high accuracy,
efficient code quality, or the integration of an existing code base,
the system architecture was deliberately structured to support more
extensions and more advanced language models in the future. These
new models could enhance the quality and contextual relevance of
the generated code. They may also facilitate more nuanced inter-
actions, potentially enabling the development of fine-grained and
complex behavior creation.



7 LIMITATIONS AND FUTURE WORK

Human-AI collaborative programming has substantially influenced
software development. DreamCodeVR represents an initial explo-
ration into speech-based VR development, providing early insights
into how LLMs may contribute to the evolution of VR application
and content creation processes. However, there are areas for improve-
ment and refinement to enhance its practical utility for developers.

Error Handling and User Feedback Utilizing LLMs to gen-
erate code introduces challenges, such as occasionally producing
incorrect or incomplete code. Establishing a system to manage errors
and furnish user feedback in an instructive and actionable manner
is essential as has been shown in our preliminary user study. This
includes developing a mechanism for categorizing errors, ranging
from instruction conflicts to malfunctioning code. Moreover, the
system should provide precise feedback, assisting users in rectifying
errors or exploring alternative implementation methods. Tailoring
feedback according to a user’s expertise is also crucial, ensuring that
guidance is both accessible and useful to all users.

Storing and Restoring the Edited Scene Exemplified by
the frequency of systemic errors, introducing a feature that enables
storing and restoring of the edited scene in DreamCodeVR is vital.
This functionality would allow users to experiment with various code
modifications without the risk of losing or damaging their existing
work. Implementing a version control system could provide the
mechanisms to empower users to manage their changes and revert
to previous versions.

Security Issues Using LLMs for code generation brings po-
tential security risks, such as generating malicious code. Thus, it is
imperative to implement security measures within DreamCodeVR.
Approaches might include the deployment of a sandbox to isolate as-
semblies, utilizing a code analysis tool to scrutinize generated code
for potential security vulnerabilities, and employing an authentica-
tion mechanism to safeguard against unauthorized code injection.

Collaborative Speech Programming DreamCodeVR
presents the compelling possibility of collaborative speech
programming, where multiple users could concurrently contribute to
a software project using voice commands. This concept, which can
be viewed as an evolution of classical pair programming, has been
shown to enhance code quality and diminish errors while positively
influencing individual skills [33]. Presently, DreamCodeVR is
constrained by limitations such as single-user code generation
and binding the generated code to the speaking client’s software
environment. Achieving synchronization and coherence during code
creation among spatially dispersed users within a VR programming
session is a substantial hurdle, albeit one that might be overcome by
utilizing template code from existing Ubiq examples tailored for
social VR applications [58, 71].

Scenario Understanding for LLM Output Generation An-
other complication associated with employing LLMs for code gen-
eration is ensuring the produced code is appropriate for specific
scenarios and contexts. DreamCodeVR could be enhanced by inte-
grating an advanced scenario interpretation module. This module
could evaluate the present scene and the user’s objectives, subse-
quently generating code tailored to the situation. Especially within
the VR data visualization domain, a nuanced understanding of how
to optimally represent data graphically is essential. For these sce-
narios, the system could be designed to deduce optimal attributes
for graphical representation from datasets, determine suitable chart
type, layout, color scheme, and scale, and subsequently generate the
requisite code to instantiate the graphic elements.

Dynamic Prompt Engineering Enhancing the quality of code
generated by DreamCodeVR may also be achieved through dynamic
prompt engineering, wherein the prompt provided to the LLM is
modified in alignment with the scene’s evolution. For instance, if

the user defines a variable utilized across numerous components,
the prompt could be adjusted to incorporate this information. Fu-
ture endeavors might explore enabling the system to adapt prompt
engineering as scenes evolve autonomously, minimizing manual in-
tervention and aligning with the ethos of "learning to learn" whereby
the system augments its performance through adaptation.

Accessibility As a voice-based programming interface, Dream-
CodeVR has potential to become an effective accessibility tool. For
example, specific populations, such as individuals with impaired fine
motor skills, could use it as an alternative to conventional speech-to-
text software. With adaptations to the current interaction modality,
which primarily relies on manual object selection, the system can
be tailored to suit individuals encountering difficulties with precise
hand movements. By incorporating voice commands as an alterna-
tive means for object selection or area interaction within the virtual
scenario, DreamCodeVR could significantly enhance inclusivity.

8 CONCLUSION

DreamCodeVR represents a novel system that harnesses the capa-
bilities of AI, specifically LLMs, to facilitate the generation of dy-
namic behaviors, properties, and mechanics within VR environments.
Building on recent works that utilize LLMs for writing application
code, DreamCodeVR makes VR application design accessible by
enabling individuals without extensive coding expertise to actively
participate in crafting immersive VR experiences. Our work demon-
strates the potential of LLMs to generate context-aware behaviors in
VR, accomplishing real-time interaction through speech inputs. The
modular architecture, built on Ubiq and Ubiq-Genie [26, 57], com-
bines speech transcription, prompt engineering, code generation, and
just-in-time compilation to infuse AI-authored behaviors into Unity
scenes. While initial findings suggest its potential in democratizing
VR content creation, especially for non-expert users, this research is
a preliminary step that underscores the need for further investigation
to realize and validate DreamCodeVR’s capabilities and impact fully.
In this context, comparing DreamCodeVR’s approach with recently
emerging systems [21], which also utilize LLMs in behavior defi-
nition and world building, could provide a broader perspective on
the opportunities and challenges of using LLMs for VR develop-
ment. While our work has explored interesting new directions in VR
content creation and rapid prototyping, numerous challenges persist.
Issues related to security, reliability, and bias in LLM-generated
code necessitate continued research. Furthermore, promising paths
forward involve exploring robust error-handling mechanisms and re-
fining prompt engineering strategies. Moreover, usage of our system
could extend beyond the individual user, suggesting potential for
collaborative endeavors in social VR programming – an intriguing
direction for future VR research.
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